روش های هم محلی موجک ها برای حل عددی مسائل مقدار مرزی بیضوی

thesis
abstract

دو روش جدید و موثر را برای حل عددی معادلات دیفرانسیل جزیی بیضوی (epde) ‎ با رفتار نوسانی و غیرنوسانی بر اساس روش هم محلی موجک های هار و لژاندر ارائه می کنیم. این روش ها در دو مرحله مطرح می شوند؛ در مرحله ی اول، موجک های هار را به کار می بریم و در مرحله ی دوم، به منظور بدست آوردن دقت بالاتر، موجک های لژاندر را جایگزین موجک های هار می کنیم‎.‎سپس یک آنالیز مقایسه ای از عملکرد روش هم محلی موجک های هار و روش هم محلی موجک های لژاندر را انجام می دهیم. علاوه بر این، عملکرد روش هم محلی موجک های لژاندر را با روش هم محلی اسپلاین درجه دو، روش بدون شبکه و روش سینک-گالرکین مقایسه می کنیم‎.‎ این آنالیز نشان می دهد که موجک لژاندر، دقت بالاتری دارد که در قالب آنالیز چندگانه تابع است. سرانجام از نتایج حاصل از مثال های عددی بر روی این روش ها، مشاهده می نماییم که روش بر اساس موجک های لژاندر برای انواع مشکلات پایه ای، دقت بهتری دارند‎.‎

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

روش هم محلی موجک برای حل عددی مسائل مقدار مرزی بیضوی

براساس روش هم محلی موجک های هار و لژاندر، روش های عددی کارآمد و جدید برای حل عددی معادلات دیفرانسیل با مشتقات جزئی بیضوی با رفتار نوسانی و غیر نوسانی ارائه شده است. روش های حال حاضر در دو مرحله توسعه داده شده است. در مرحله اول، آنها برای موجک هار به منظور به دست آوردن دقت بالاتر توسعه داده شده است. در مرحله دوم موجک های لژاندر جایگزین موجک هار شده است. از عملکرد روش هم محلی موجک هار و روش هم م...

روش هم محلی موجک هار برای حل عددی مسائل جریان لایه مرزی سیال

در این پایان نامه یک روش عددی بر پایه موجک های هار برای حل عددی دستگاه زوج معادلات دیفرانسیل معمولی که با مسائل جریان سیال همرفت طبیعی لایه مرزی باpr ‎ بالا در ارتباط هستند، ارائه می دهیم. برای این مسائل تأثیر تغییرات ‎pr‎ روی انتقال حرارت در سیال بررسی شده است. به منظور محک زدن دقت روش، سیال ویسکوالاستیک را که دارای جواب دقیق است با این روش امتحان می کنیم‎.‎ همچنین مسائل مقدار مرز...

روش پرتابی- هم محلی برای حل عددی مسائل مقدار مرزی کسری

یک بررسی تحلیلی درباره وجود جواب و منحصربفردی جواب دقیق برای این رده از مسائل، بیان شده است.

15 صفحه اول

حل مسائل مقدار مرزی بیضوی و معادلات دیفرانسیل دوهمساز با استفاده از روش موجک

حل عددی معادلات پواسون و دو همساز مس‍‍أله مهمی در آنالیز عددی به شمار می رود. همچنین معادلات دیفرانسیل جزئی بیضوی کاربرد های زیادی در علوم و مهندسی دارند. در این پایان نامه دو روش عددی مبتنی بر موجک های هار و موجک های لژاندر برای به دست آوردن جواب معادله دیفرانسیل جزئی بیضوی ارائه می شود. ابتدا به ارائه تعاریف مقدماتی و مفاهیم اساسی می پردازیم. سپس یک روش محاسباتی برای حل معادلات پواسون و دو هم...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023